> JLIr n/bjbjWW 455& 8TD%rTTTT>0?%A%A%A%A%A%A%$2(*e%<"<<e%TThz%...<^TT?%.<?%..VS$@$TP˝M$+%%0%$Tx+x+$x+$8<<.<<<<<e%e%<<<%<<<<x+<<<<<<<<< : Year 4 programme of study
Number number and place valueStatutory requirementsPupils should be taught to
count in multiples of 6, 7, 9, 25 and 1000
find 1000 more or less than a given number
count backwards through zero to include negative numbers
recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
order and compare numbers beyond 1000
identify, represent and estimate numbers using different representations
round any number to the nearest 10, 100 or 1000
solve number and practical problems that involve all of the above and with increasingly large positive numbers
read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.Notes and guidance (non-statutory)Using a variety of representations, including measures, pupils become fluent in the order and place value of numbers beyond 1000, including counting in tens and hundreds, and maintaining fluency in other multiples through varied and frequent practice.
They begin to extend their knowledge of the number system to include the decimal numbers and fractions that they have met so far.
They connect estimation and rounding numbers to the use of measuring instruments.
Roman numerals should be put in their historical context so pupils understand that there have been different ways to write whole numbers and that the important concepts of zero and place value were introduced over a period of time.
Number addition and subtractionStatutory requirementsPupils should be taught to:
add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
estimate and use inverse operations to check answers to a calculation
solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.Notes and guidance (non-statutory)Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency (see HYPERLINK \l "MathematicsAppendix1Examples"HYPERLINK \l "EnglishAppendix1Spelling"English Appendix 1).
Number multiplication and divisionStatutory requirementsPupils should be taught to:
recall multiplication and division facts for multiplication tables up to 12 12
use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
recognise and use factor pairs and commutativity in mental calculations
multiply two-digit and three-digit numbers by a one-digit number using formal written layout
solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.Notes and guidance (non-statutory)Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency.
Pupils practise mental methods and extend this to three-digit numbers to derive facts, (for example 600 3 = 200 can be derived from 2 x 3 = 6).Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see HYPERLINK \l "MathematicsAppendix1Examples"Mathematics Appendix 1).
Pupils write statements about the equality of expressions (for example, use the distributive law 39 7 = 30 7 + 9 7 and associative law (2 3) 4 = 2 (3 4)). They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations for example, 2 x 6 x 5 = 10 x 6 = 60.
Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.
Number fractions (including decimals)Statutory requirementsPupils should be taught to:
recognise and show, using diagrams, families of common equivalent fractions
count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
add and subtract fractions with the same denominator
recognise and write decimal equivalents of any number of tenths or hundredths
recognise and write decimal equivalents to EMBED Equation.3, EMBED Equation.3, EMBED Equation.3
find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths
round decimals with one decimal place to the nearest whole number
compare numbers with the same number of decimal places up to two decimal places
solve simple measure and money problems involving fractions and decimals to two decimal places.Notes and guidance (non-statutory)Pupils should connect hundredths to tenths and place value and decimal measure.
They extend the use of the number line to connect fractions, numbers and measures.
Pupils understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths.
Pupils make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities. Pupils use factors and multiples to recognise equivalent fractions and simplify where appropriate (for example, EMBED Equation.3 = EMBED Equation.3 or EMBED Equation.3 = EMBED Equation.3).
Pupils continue to practise adding and subtracting fractions with the same denominator, to become fluent through a variety of increasingly complex problems beyond one whole.
Pupils are taught throughout that decimals and fractions are different ways of expressing numbers and proportions.
Pupils understanding of the number system and decimal place value is extended at this stage to tenths and then hundredths. This includes relating the decimal notation to division of whole number by 10 and later 100.
They practise counting using simple fractions and decimals, both forwards and backwards.
Pupils learn decimal notation and the language associated with it, including in the context of measurements. They make comparisons and order decimal amounts and quantities that are expressed to the same number of decimal places. They should be able to represent numbers with one or two decimal places in several ways, such as on number lines.
MeasurementStatutory requirementsPupils should be taught to:
Convert between different units of measure [for example, kilometre to metre; hour to minute]
measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
find the area of rectilinear shapes by counting squares
estimate, compare and calculate different measures, including money in pounds and pence
read, write and convert time between analogue and digital 12- and 24-hour clocks
solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.Notes and guidance (non-statutory)Pupils build on their understanding of place value and decimal notation to record metric measures, including money.
They use multiplication to convert from larger to smaller units.
Perimeter can be expressed algebraically as 2(a + b) where a and b are the dimensions in the same unit.
They relate area to arrays and multiplication.
Geometry properties of shapesStatutory requirementsPupils should be taught to:
compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
identify acute and obtuse angles and compare and order angles up to two right angles by size
identify lines of symmetry in 2-D shapes presented in different orientations
complete a simple symmetric figure with respect to a specific line of symmetry.Notes and guidance (non-statutory)Pupils continue to classify shapes using geometrical properties, extending to classifying different triangles (for example, isosceles, equilateral, scalene) and quadrilaterals (forexample, parallelogram, rhombus, trapezium).
Pupils compare and order angles in preparation for using a protractor and compare lengths and angles to decide if a polygon is regular or irregular.
Pupils draw symmetric patterns using a variety of media to become familiar with different orientations of lines of symmetry; and recognise line symmetry in a variety of diagrams, including where the line of symmetry does not dissect the original shape.
Geometry position and directionStatutory requirementsPupils should be taught to:
describe positions on a 2-D grid as coordinates in the first quadrant
describe movements between positions as translations of a given unit to the left/right and up/down
plot specified points and draw sides to complete a given polygon.Notes and guidance (non-statutory)Pupils draw a pair of axes in one quadrant, with equal scales and integer labels. They read, write and use pairs of coordinates, for example (2, 5), including using coordinate-plotting ICT tools.
StatisticsStatutory requirementsPupils should be taught to:
interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.
solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs. Notes and guidance (non-statutory)Pupils understand and use a greater range of scales in their representations.
Pupils begin to relate the graphical representation of data to recording change over time.
Maths - Year 4 Loyne Learning Alliance
Source : DfE The National Curriculum in England Key Stage 1 and 2 Framework Document September 2013
<=TUpc d
3qrs!"MOvwȿȿȹȿȹȲȿh120J^Jjh12Uhah|h12hp8h125hp8h12hVAh12
h12PJhp8h12PJhhh12hp8h12^Jh@h12CJh@h12B*CJphh;h12h12h^h125<=T6Vkdz$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12
x$Ifgd12gd12Vkd$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12 $Ifgd12TUpd
r
ufffffffff
&Fx$Ifgd12
xx$Ifgd12}kd$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
mkdB$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12x$Ifgd12ikd$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12
y
x$Ifgd12gd12ikd$$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12x$Ifgd12
}kd$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
x$Ifgd12Vkdq$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt123rszox$Ifgd12ikd$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12
&Fx$Ifgd12
xx$Ifgd12ikd$$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12x$Ifgd12mkd9$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12<=#$lmnZ[tCDQZ[\uغرغ픋hE7h120J
h120JhVAh12hp8h12PJhhh12hp8h12^Jh@h12CJh@h12B*CJphh12hSh;h12h|h12hp8h12jh12UhE7h120J^J6Vkdh$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12
x$Ifgd12gd12=$mufffff
&Fx$Ifgd12
xx$Ifgd12}kd$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12mnmkd0$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12x$Ifgd12ikd$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12^ikd$$Ifq
o%[*
t0OuOuOuOu[*44
qayt12x$Ifgd12
x$Ifgd12gd12lkdQ $$Ifq4
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12}kdd
$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
x$Ifgd12Vkd $$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12VW<=>NOPQSTdefgijzչՆ}m`չj/
hx"h12EHUjV
hx"h12EHUVhx"h12EHjhx"h12EHUjh\ph12EHUjV
h\ph12EHUVh\ph12EHjh\ph12EHU
h12PJhp8h12PJh12hXh12hhh12hp8h12^Jh@h12CJh;h12!W~WkikdL$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12
&F$Ifgd12
&Fx$Ifgd12
xx$Ifgd12z{|}~PVW+,XYijklop̺m\H'jV
hSh12CJEHUVaJ!j{hSh12CJEHUaJ'jV
hSh12CJEHUVaJhSh12CJEHaJ!jhSh12CJEHUaJhSh12CJaJh@h12CJh;h12hVAh12h12hhh12hp8h12PJjh\ph12EHUj6h\ph12EHUjV
h\ph12EHUV+,|kc !_"{{{{{{{{{x$Ifgd12mkd$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12x$Ifgd12^"_"`"a"m"n"""""űŌ{tmi\mSmJChhhahp8ha^Jh@h12CJh@h12B*CJphh12h;h12h|h12!jhSh12CJEHUaJ'jV
hSh12CJEHUVaJ!jhSh12CJEHUaJ'jV
hSh12CJEHUVaJhSh12CJEHaJhSh12CJaJ!jhSh12CJEHUaJ!jhSh12CJEHUaJ_"`"a"m"n"+VkdP$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12
x$Ifgd12gd12lkd$$Ifq4
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12n"""""i###J$uhYYYYH
&Fxx$Ifgd12
&Fx$Ifgd12
xx$Ifgd12}kd$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
x$Ifgd12"""""h#i#####5$6$I$J$$$$$$Q%R%%%%%%%%%%%)&*&+&7&W&X&o&p&&&&&&['\'Ǿǜǆwhp8h125hhh12hp8h12^Jh@h12B*CJphh12h|h12hp8h12h>h126PJ
h12PJhp8h12PJh;h12h@h12CJh;hahVAhahhhahp8haPJhp8haha.J$$$$zx$Ifgd12kkd$$Ifq
o%[*
t0OuOuOuOuOuOu[*44
qayta
&Fx$Ifgd12$$R%%%*&x$Ifgd12mkd$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12*&+&,&-&.&/&0&1&2&3&4&5&6&7&W&
x$Ifgd12gd12ikd$$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12W&X&o&p&}kd$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
x$Ifgd12Vkd=$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12p&&&\''''(zox$Ifgd12ikdr$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12
&Fx$Ifgd12
xx$Ifgd12\'''''''(((((())))***********0+++++++z,,,,,,,,,,,,-~-------.#.$.q.r......κκΤh5jh V]
h12PJhp8h12^Jh@h12B*CJphh|h12h12hp8h12h@h12CJh;h12hVAh12hp8h12PJhhh12@(())*x$Ifgd12mkd $$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12******.Vkd4!$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12
x$Ifgd12gd12ikd $$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12***1+++ufff
&Fx$Ifgd12
xx$Ifgd12}kd!$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12++++mkd"$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12x$Ifgd12ikdi"$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12+,,,,,y
x$Ifgd12gd12ikd#$$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12x$Ifgd12,,,,}kd$$$Ifq44
o%[*
t
0OuOuOuOuOuOu[*Ou44
qaf4p
yt12
x$Ifgd12Vkd+$$$Ifq44o%[* @
t
Ou[*44
qaf4p
Ouyt12,----#.zox$Ifgd12ikd`%$$Ifq
o%[*
t0OuOuOuOuOuOu[*Ou44
qayt12
&Fx$Ifgd12
xx$Ifgd12#.$.r..x$Ifgd12mkd%$$Ifq44
o%[*
t0OuOuOuOu[*Ou44
qaf4yt12............//~ dgdSgd5jgd12ikd&$$Ifq
o%[*
t0OuOuOuOu[*Ou44
qayt12
...........////K/j/k/m/n/h5jh V]hShSCJOJQJaJhSCJOJQJaJhgQhSCJOJQJaJhSh@hSOJQJhSOJQJjhSUmHnHuh&jh&U/k/l/m/n/gd5jV^VgdS21h:p12. A!"#$%x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*4
qayt12$$If!vh#v[*:Vq4
t0OuOuOuOu[*5[*/Ou4
qaf4yt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12Dd
b
C0A?one quarter"2Z@WsLp#NH6c`!.@WsLp#NHv@hxcdd``$d@9`,&FF(`TɁQRcgbR 6x@깡jx|K2B*R
8 :@u!fMv`wfbQ9A(31ARk8SB7s
`!/_!y˲>v@@h|xcdd``$d@9`,&FF(`TɁɁQRcgbR x@17T
obIFHeA*CPD.#l&F0Kvo&2sWqSa8SaED-ji3vq}c9gb
+.l?@BCDEFGHcKNOPQSRUTVWYX[Z]\^_`abpodefghijklmnqtuvwxyz{|}~Root Entry/ FЄȺMMData
A"'WordDocument.4ObjectPool1
DMЄȺM_1456214200FDMDMOle
CompObjfObjInfo
!"#$&),-./01369:;<=>@CFGHIJKMPSTUVWXZ\]^_`acdefghijklmo
FMicrosoft Equation 3.0DS EquationEquation.39qav .@&1&MathTypep-@@@ Arial/u9#
OlePres000 Equation Native M_1456214201FDMDMOle
^5I,u@/uf-2
1\4y2
a1y
&
"Systemf
80-1
eArial e~1 e~4
FMicrosoft Equation 3.0DS EquationEquation.39qCompObjfObjInfoOlePres000
Equation Native Ma{v .@@&&MathType`- @ Arial;w&
^$I8w@;w&f--2
X2y2
^1y
&
"System&f-
8-1
eArial e~1 e~2
FMicrosoft Equation 3.0DS EquationEquation.39qav .@&_1456214202FDMDMOle
CompObjfObjInfoOlePres000Equation Native %M_1456214203"FDMDMOle
'5&MathTypep-@@@ Arial/uJ$
%I,u@/u"f2-2
1\4y2
X3y
&
"System"f2
8-1
eArial e~3 e~4CompObj(fObjInfo*OlePres000+Equation Native 2D
FMicrosoft Equation 3.0DS EquationEquation.39qav .@&5&MathTypep-@@@ Arial/u*%
g>mI,u@/ufm-2
1V9y2
X6y
&
"Systemfm
8-(
eArial~6~9
FMicrosoft Equation 3.0DS EquationEquation.39q_1456214204FDMDMOle
4CompObj 5fObjInfo7OlePres000!8Equation Native ?D_1456214205($FDMDMOle
Aav .@&1&MathTypep-@@@ Arial/u
p>mI,u@/umf4-2
1U3y2
X2y
&
"Systemmf4
8-(
eArial~2~3
FMicrosoft Equation 3.0DS EquationEquation.39qav .@&1&MathTypepCompObj#&BfObjInfoDOlePres000%'EEquation Native LD-@@@ Arial/u>
>mI,u@/uZf9-2
1\4y2
a1y
&
"SystemZf9
80-(
eArial~1~4
FMicrosoft Equation 3.0DS Eq_1456214206*FDMDMOle
NCompObj),OfObjInfoQuationEquation.39qav .@&1&MathTypep-@@@ Arial/u
TP>mI,u@/u3f-2
1U8y2
X2y
&
"System3f
8OlePres000+-REquation Native YD1Tables+SummaryInformation(0[0-(
eArial~2~8Oh+'0Xx
,8@HPYear 1 programme of studyStaining SchoolNormal.dotmStewart Atkin2Microsoft Office Wor6m6z`!.z iky6mv@hxcdd``$d@9`,&FF(`TɁQRcgbR x@L깡jx|K2B*R
8 :@u!fMv`wfbQ9A(31AKkӁ{>1)u_ʨf1l!SI&>?co\u!`v
0y{fdbR
,.I3uX0t5t$:$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12Dd
`
C.A?six ninths"2ZRGfXڡ&6`!.RGfXڡ&v@hxcdd``$d@9`,&FF(`TɁQRcgbR x@L깡jx|K2B*R
8 :@u!fMv`wfbQ9A(31ATK+}].ßBA?f9 Dd
b
C0A?two eighths"2Ze?Yo'kln6`!.e?Yo'klnv@hxcdd``$d@9`,&FF(`TɁQRcgbR 6x@깡jx|K2B*R
8 :@u!fMv`wfbQ9A(31AWH].G!U:KEAdee
rE%/UrA]x`+KRs@3uX0t5t| LFF9ڗ$$If!vh#v[*:Vq4
t0OuOuOuOu[*5[*/Ou4
qaf4yt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*4
qayta$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12x$$If!vh#v[*:Vq44 @
t
Ou[*5[*4
qaf4p
Ouyt12$$If!vh#v[*:Vq44
t
0OuOuOuOuOuOu[*5[*/Ou4
qaf4p
yt12$$If!vh#v[*:Vq
t0OuOuOuOuOuOu[*5[*/Ou4
qayt12$$If!vh#v[*:Vq44
t0OuOuOuOu[*5[*/Ou4
qaf4yt12$$If!vh#v[*:Vq
t0OuOuOuOu[*5[*/Ou4
qayt12d@@M@M!՜.+,D՜.+,Xhp
The Westfield CentreF&Year 1 programme of studyTitle 8@DocumentSummaryInformation8bCompObjnr_PID_HLINKSAL^MathematicsAppendix1ExamplesDEnglishAppendix1Spelling^MathematicsAppendix1Examples
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q^02 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH R`R{Normald CJOJQJ_HaJmH sH tH X@X{ Heading 4$<@&5B*
CJ\aJphOutH DA DDefault Paragraph FontRi@RTable Normal4
l4a(k (No Listdod{Heading 4 Char/5B*
CJOJQJ\_HaJmH phOusH tH o{bullet (under numbered)
&Fd $CJOJQJ^J_HaJmH sH tH o{bullet (under text)-
&F
heed ^e`$CJOJQJ^J_HaJmH sH tH ro"r{
Heading - box
$/5B*CJ$OJQJ\_HaJ$mH phsH tH FU`1F5j Hyperlink>*B*
CJOJQJ^JphOu4@B4S0Header
B#>oQ>S0Header CharCJOJQJaJ4 @b4SFooter
B#>oq>SFooter CharCJOJQJaJR@RSBalloon TextdCJOJQJ^JaJNoNSBalloon Text CharCJOJQJ^JaJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
n'0 66z"\'.n/ ')+.4>T
m_"n"J$$*&W&p&(**++,,#../n/!"#$%&(*,-/012356789:;<=?!MNv
C
Z
=NPSdfiz|Xikon'XXĕX:::::::@ @| d(
,
;0@@ Loyne Learning AllianceCentury GothicPowerPlusWaterMarkObject7197404c"$?0(
B
S ?